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QuCbec, Canada 
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Received 3 July 1981, in final form 26 October 1981 

Abar~ct. Versal deformations of normal forms of elements of real classical Lie algebras 
o(p, q), sp(2n, R), 0*(2n), sp(2p, 2q) and u(p, q )  are computed. Examples involving the Lie 
algebras o( p, q), p +q s 6, are considered. 

1. Introduction 

In this paper we compute versal deformations of elements of semi-simple real Lie 
algebras. These deformations can be understood as an efficient and exhaustive 
description of ‘perturbations’ of elements within a Lie algebra, considered up to an 
equivalence transformation gA4g-l by elements g of the corresponding Lie group. To 
be specific consider the Lie algebra 0(4,2) of the conformal group of space-time. Its 
elements are linear combinations of operators of rotations, Lorentz boosts, translations 
in space and time, proper conformal transformations and a dilation (see appendix). 
Given one of these operators, for instance the Lorentz boost Kz, how can one describe 
all others which are ‘close’ to the given one? An obvious answer is to add to Kz a linear 
combination of the 15 generators with small coefficients. Indeed, any given element M 
of 0(4,2) which differs a little from Kz must be among the linear combinations. 
However, among these there will be many elements conjugate to M under the action of 
the group 0(4,2) of inner automorphisms of 0(4,2). In order to avoid such a 
redundancy and to have each orbit of 0(4,2) elements found in the vicinity of Kz 
represented exactly once, one has to determine a minimal versal deformation of Kz. A 
particularly simple versal deformation of it is 

Kz + A 1 Kz + A zP1+ A J C1+ h4P3 + A 5 C, + A aLz + A 7 D (1.1) 

where hi are ‘independent’ small real parameters. Thus every ‘perturbation’ of Kz or an 
element of 0(4,2) conjugate to it is conjugate to (1.1) for some values of the parameters 
Ai. The number of parameters involved gives information about the complexity of the 
orbit. The more singular an element is, the more parameters are involved. 

Our work originated from a paper by Arnold (1971) in which he remarks that both 
the Jordan normal form MJ of a complex matrix M and the reducing matrix g, where 
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MJ = gMg-’, depend discontinuously on the elements of the original matrix M. So if a 
matrix has values which are known only approximately, it is unwise to reduce it to its 
Jordan form. Also, if one has a family of matrices depending smoothly on parameters, 
each individual matrix can be reduced to a Jordan normal form but in such an operation 
the smoothness and even the continuity relative to the parameters is lost. Arnold finds a 
normal form MA, depending on parameters, for an arbitrary family of complex matrices 
close to a given matrix M and depending holomorphically on parameters, such that 
both MA and the reducing matrix g depend analytically on the same parameters. This is 
the simplest such normal form, in the sense that the number of parameters involved is as 
small as possible. The Arnold normal form MA is computed as a versal deformation of 
the Jordan form MJ of the given matrix M. The transformation of M to the Arnold 
normal form MA is a GL(n, C)-conjugacy transformation of the element M of the Lie 
algebra gl(n, C) of the general linear group. Besides the case M E  gl(n, C) studied by 
Arnold, versal deformations were also found for M E  gl(n, R) (Galin 1972) and for the 
symplectic Lie algebras sp(2n, C) and sp(2n, W) (Galin 1975). In relativistic and 
quantum physics, the orthogonal groups play an important role. The Arnold normal 
forms of matrices M belonging to the Lie algebra o(n, C) were also calculated (Patera 
and Rousseau 1982). 

The purpose of this paper is to consider real semi-simple Lie algebras with 
involutions and to compute versal deformations of their elements. Representatives of 
conjugacy classes of elements of the algebras in a form analogous to the Jordan normal 
forms can be found either from Burgoyne and Cushman (1977) or explicitly from 
Djokovic eta1 (1981). These normal forms are again unstable. It is therefore natural to 
consider the problem of Arnold and Galin also for these algebras. More precisely, we 
consider the Lie algebras o ( p ,  4), sp(2n, R), u(p, 4), sp(2p, 24), o*(2n), and find, in 
terms of versal deformation, a normal form of Arnold to which any family depending 
smoothly (analytically) on parameters can be reduced (in a neighbourhood of an 
element) under a smooth (analytic) conjugacy transformation from the corresponding 
Lie group. 

The orthogonal and symplectic Lie algebras are treated simultaneously; they differ 
only by the value of a parameter E ( E  = +1  for o(p ,  4) and E = -1 forsp(2n, R)). For this 
reason and also because we do not use the same normal forms as Galin, we include here 
the case sp(2n, R). 

The set of parameter values which correspond to singularities for a family in general 
position is called the bifurcation diagram. Bifurcation diagrams for all o(p,  4) families 
of matrices depending on one or two parameters are computed. 

The only real classical Lie algebra whose versal deformations have not been found is 
the linear algebra of quaternionic matrices gl(n, W). After the work of Arnold and our 
treatment of quaternionic Lie algebras o*(2n) and sp(2p, 24), it is an easy straightfor- 
ward matter. 

In 0 2 we recall the normal form of elements of real semi-simple Lie algebras with 
involutions. In 0 3 the versal deformations are described. The results are summarised 
in the tables. The last section contains a description of bifurcation diagrams and many 
examples which are often encountered in publications. Namely, normal forms of 
elements of orthogonal Lie algebras o(p, 4), p + 4 s 6 ,  are described and summarised in 
table 7; table 8 contains a list of all strata of o( p ,  4), p and 4 3 0, with codimension 3 or 
less; a versal deformation of o(p ,  4) elements of codimension 1 and 2 are given (table 9) 
together with corresponding bifurcation diagrams; finally, a versal deformation of the 
‘Lorentz boost generator’ K2 (cf equation (1.1)) is derived in all details. 
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2. Conjugacy classes of real Lie algebras 

In this section we describe representatives of elements of conjugacy classes of the Lie 
algebras o(p, q ) ,  sp(2n, R), u(p, q ) ,  o*(2n), sp(2p, 24). They are the analogous normal 
forms of the Jordan normal forms in these cases. The results are well known (Burgoyne 
and Cushman 1977, Djokovic et a1 1981) and our presentation follows the second 
reference. 

We denote by L(N, R) (where N could be p + 4,2n or 2p + 2q depending on the 
case) any of the Lie algebras listed above and by L(N, R) the corresponding Lie group. 
L(N, R) is the group of k-linear operators on k (where k could be R, Q3 or the algebra M 
of quaternions depending on the case) preserving a given non-degenerate bilinear form 
f on kN, i.e. if gE 1(N, R), then 

Vx,  y E kN, f (gx, gY 1 = f (x ,  Y ). (2.1) 
The bilinear form f has a certain property of symmetry or of antisymmetry and it is 
represented by an invertible matrix K satisfying one of the relations 

for Ob,  4) and SP(2P, 2q) 
for Sp(2n, R) and 0*(2n) (2.2) K ~ = E K  where E = { 1; 

K +  = &K for U(p, q )  with E = +1 

(K+ denotes the complex conjugate transpose of K). For the groups O(p,  q), U(p, q )  
(Sp(2p, 2q)) we have the additional property that the form is of signature (p, q )  
((2p, 24)). L(N, W )  is represented as a subset of the set of non-singular matrices 
g E kNxN,  where 

R 

W 

for O(p, q )  and Sp(2n, W) 

for 0*(2n) and Sp(2p, 2q). 
k =[C for U P ,  4) (2.3) 

The set W of quaternions is identified with the set of 2 x 2 matrices (-2. 3) where ‘y, 
/3 E C, y* being the complex conjugate of ‘y. The quaternionic conjugate is defined as 

(2.4) 

Identifying an element of L(N, R) with its matrix representation, we may write 

g E L(N W) iff Vx, y E k ”, xgKg7 = xK7, (2.5) 
where 

uT if a is a matrix over IW 
a+ = (a$)T if a = (aij) with aij E C 
(a(aii))T if a = (aii) with uii E W and a given by (2.4). 

(2.6) 

Equation (2.5) implies 

g E L(N IW) iff gKg = K. (2.7) 
A matrix M c k N x N  belongs to the Lie algebra i(N,R) iff the ‘infinitesimal 

(2.8) 

equivalent’ of (2.5) is satisfied i.e. 

Vx, y E kN, xA?Kjj +xKMy = 0 
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which implies 

ME 1(N, R) iff KM+QK = O .  (2.9) 
Therefore, in order to specify an element of L(N, R), one has to give first a matrix K 
satisfying one of the conditions (2 .2 )  with det K # 0, and a matrix M satisfying together 
with K the condition KM+1I;Ix' = 0. Our matrix K can change from case to case in 
order to obtain the simplest possible form for M (Burgoyne and Cushman 1977, 
Djokovic et a1 1981). Two matrices K and K' satisfying the same one of the relations 
(2.2) and having the same signature are equivalent, i.e. K'=gKg  for some g E  
GL(N, k). 

Two elements M and M' of 1(N, R) belong to the same L(N, R)-conjugacy class (or 
to the same orbit) iff 

M' = gMg-' for some g E L(N, R). 12.10) 

Orb(M) ={gMg-'Ig E L(N, R)}. 

The L(N, W) orbit of M is defined as 

(2.11) 

Thus an orbit of M is a submanifold of 1(N, R). In the case of the Jordan normal form of 
elements of gl(n, R), we have that any matrix is conjugate to a matrix which is a direct 
sum of irreducible blocks. Similarly here any matrix is conjugate to a direct sum of 
blocks of two types. 

( i )  Irreducible 'generalised Jordan blocks' (for the matrix elements we allow 2 X 2 
matrices). 

(ii) Blocks of the form (A -A) (with A a generalised Jordan block). Such a block is 
orthogonally indecomposable with respect to the form f. 

A direct sum of blocks of the two types is said to be a generalised Jordan normal 
form. 

Remark. Let us point out that the non-zero eigenvalues of any element of 1(N, R) occur 
in pairs f a ,  except for the algebra u(p, 4), where they occur in pairs a, -a*. 

The indecomposable blocks are listed in table 1. In each case the corresponding 
matrix K is given. The following conventions are used in table 1 : 

(9 J , =  ( 0 1 . " . . .  (2.121 

' . O f  

An arbitrary Jordan block is therefore denoted by al,  + J,,, where a E C, and I ,  is the 
identity n x n matrix. 

(ii) We use tensorial notation for generalised Jordan blocks. For example, 
(-; s) 01, + I2 0 J, represents the block 

a b  1 0  

-b  a ' 

t2.13) 

(iii) Cases come in pairs with the same matrix MJ and matrices K of opposite sign. 
They are distinguished by a parameter f3 = *l, 8 = 1 for the unprimed cases and 8 = -1 
for the others. 
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(iv) The matrix FN is given by 

1067 

(2.14) 

In particular, 

FZ'(-~ '). (2.15) 

Table 1. Indecomposable Jordan normal forms of elements of the Lie algebras of o ( p ,  q) ,  
sp(2n, R), u(p ,  q).  sp(2p, 2q) and 0*(2n). Matrices Z ,  J, and F,, are defined in P 2 .  

Algebra Case MJ K 
Signatures 
(€4 4 )  

O(P, 4 )  
E =+1  

sp(2n, R) 

E =-1 

I (e = 1) Mj = JN K = eFN 
I ' ( e=- l )  N = 2 n  if E = - 1  

N = 2 n + l i f e = + l  

p - q = * l  

II'(O=-l) b > O  
nodd ~ = + l  + p - q = * 2  
n even E = - 1  

A = uZ, + J,, a a 0 
II even if e = + 1  and a = O  
m oddif E =-1 and a = O  

nodd E = - 1  
neven ~ = + l  + p = q  

& = Fz{ 

A = ( -b a ">oz. +Z2@J,, 

a, b ER, a >O, b > O  

0 Z2n 
K=(Ez2" 0) P'4 

K=OiF, ifneven + p = q  
K = e F ,  ifnodd - p - q = * l  

E=+1  11 (e = 1) -A+) P'4 

A = BI,, + J,, E C 
ReB>O 
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Table l-(confinued) 

Algebra Case M K 
Signatures 
( P >  4 )  

K = ~ I Z S F ,  
nodd ~ = + l  ~f p - q = d  
n even F = -1 

Iz = 12( 

I I ' ( O = - l ~  

b>O 

nodd ~ = + l  p - q ' * 2  
n even E = - I  
nodd ~ = - l  
n even E = + l  -- p = q 

2 = F2( 

K =  

111'(8=-1) A=aIz,+120J,i  
a 2 0  

a >@, b > O  

Therefore K = k OFN is the matrix 

-z R -R KI / I . . .  

(2.16) 

The Jordan normal form of a decomposable element of 1(N, W) is a direct sum of normal 
forms of indecomposable elements of 1(N, R), (My', K"') 

3. Versa1 deformations of elements of 1(N, R) 

(2 .17)  

Here we shall define the notion of versa1 deformation of an element of a real Lie 
algebra. More details about such deformations are to be found in (Arnold 1971). 
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Definition. (1) A deformation of an element MO E 1(N, W) is a family M: A -* 1(N, R)  
where A is a neighbourhood of 0, A c R k ,  depending smoothly (analytically) on the 
parameters and such that M(0) =MO. (2) A deformation M(A) of MO is versal iff for 
any deformation M'(p1, . . . pm) E 1(N, R) of MO, M'(p)  is induced by M(A), i.e. there 
exists a neighbourhood V of 0 in R", a map c p :  V + R k  with cp(O)=O,  and a map 
g :  V+ L(Ny R) with g(0) =I such that V p  E V, M ' ( p )  = g(p)M(cp(p))g-'(p), and both 
cp and g are smooth (analytic). 

Obviously, it is enough to consider versal deformations of matrices MJ which are in 
generalised Jordan form and we consider only such matrices. 

A technique for finding versal deformations is given by the following lemma. 

Lemma. (Arnold 1971). A deformation M(A) of a matrix MO is versal iff M(A) is 
transversal to Orb MO at the point A = 0. The minimal number of parameters A = 
(Aly.  . . , A k )  appearing in such a deformation is therefore equal to the codimension of 
Orb MO. 

Definition. A versal deformation with the minimal number of parameters is called a 
minimal versal deformation. 

By the Lemma the problem of computing versal deformations is reduced to the 
computation of a complement of the tangent space of Orb MJ at MJ in l(Ny R). Among 
the complements of TM, Orb MJ we specify two: (1) the orthogonal complement under 
the inner product (A, B) = Tr(AB+), (2) a complement which has the minimal number 
of non-zero entries. For the first one, we use the following lemma. 

Lemma. (Arnold 1971) C E 1(N, R )  is orthogonal to Orb(Mo) iff [C', MO] = 0. 
Therefore, one has to compute centralisers of elements of 1(N, R). 

Remark. The centralisers of decomposable elements are direct sums of centralisers of 
each block whenever there are no common eigenvalues of the blocks. In the other cases 
the centralisers have more complex structures but one can easily convince oneself that it 
is enough to compute centralisers of direct sums of pairs of indecomposable elements. 

(3.1) 
where C? is given in (2.6). The centralisers are given by figures 1-5 in table 2 together 
with the explanations appearing in tables 3 , 4  or 5 depending on the algebra. 

Theorem 1. Let MJ€ 1(N, R )  be in generalised Jordan normal form. Then M g )  = 
MJ+ C'(A) is a minimal versal deformation of MJ, where C(A) is a generic element of 
CentrlcNR, MJ. The number d of independent parameters is equal to the dimension of 
Centrl(N,R, MJ and is computed according to the last column of tables 3-5. 

The centralisers in 1(N, R) are the sets 

Centrl(N,R, MJ = {Cl[C, MJ] = 0 and KC + CK = 0)  

Proof. It follows from (2.9) and the special form of the matrix K that if C E 1(N, R) then 
c+ E 1(N, R). 

An explicit global formula for d can be found in Patera et a1 (1982). 
The versal deformation of theorem 1 is orthogonal to the orbit of MJ; however, it 

contains many non-zero matrix elements. In a normal form one would like to have as 
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Table 2. Centralisers of normal forms of elements of l(N,R). All full lines denote a 
repetition of the same element along the line, the element being one of the following types: 
c E R ,  id E iR, y E C, (-2 with c, d E 88, (-0'. ,".)E W etc. For any matrix C = (q), the matrix 

is defined in (2.6). E is given for the different algebras in tables 3-5. All broken lines 
represent a repetition of an element of the types indicated but with signs alternating from 
place to place. 

Figure 1 

Figure 3 

Figure 5 

Figure 2 

Figure L 

many zero matrix elements as possible. For that we compute the general form of a 
tangent vector to Orb(MJ), i.e. a vector D of the form [D, M,] with D E 1(N, R). The 
general form of an element [D, MJ] is related to the general form of the adjoint C' of an 
element C E CentrlcN,R) M,. Corresponding to each full (broken) line of C' which is 
filled with non-zero elements in tables 2-5 we have that the sum (alternating sum) of the 
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elements on the corresponding line of [D, MJ] is zero, and when the line is made up of 
blocks (-; the sum (alternating sum) of the corresponding blocks in [D, MJ] is of the 
form (2 -$ 

In order to find a complement to the tangent space to Orb MJ, one keeps in mind the 
general form of C+ where C E Centr MJ and takes the elements A of 1(N, R )  which do 
not have the property that 0 equals the sum (alternating sum) of a line of A correspond- 
ing to a full (broken) line of C+ in case this line is filled with non-zero elements. 

If a line of C+ is made up of blocks (-",) then one takes A such that the sum 
(alternating sum) of the corresponding blocks of A is not of the form (i-f). For 
example, in order to break the property that the sum (alternating sum) of the elements 
on the line is zero, we repeat the same element (the element with alternating sign) on 
each place on the line. Other solutions are found by taking on the line only the minimal 
number of elements necessary to break the property. For gl(n, C) (Arnold 1971) it 
suffices to take one element on each line. Here we sometimes have to take several 
non-zero elements in order to stay inside the algebra l(Ny R). 

Theorem 2. Let 1(N, R) be in generalised Jordan normal form. Then M g )  = 
MJ + M ( h )  is a minimal versal deformation of MJ, where M ( h )  is a generic element of a 
transversal subspace of TM, Orb MJ in 1(N, R), given by the figures of table 6 and the 
legend of tables 2-5. 

Theorem 3. Let M ( p l ,  . . . , p,) be a C" family of elements of 1(N, R) with M(0)  =MO 
and let MJ be the generalised Jordan normal form of MO. Let d = codim Orb MJ. Then 
there exist C" mappings 

c p :  R" + R d  g :  R" +L(N, R) 

such that cp(0) = 0 and M ( p )  = g(p)MA(rp(p))g-'(p), where MA is a versal deformation 
of MJ, given in either of theorems 1,2. 

4. Bifurcation diagrams and examples 

In this section we consider families of elements of l(N,R) in general position (the 
definition is given below) and investigate the possible structures of the matrices of a 
family. Then a number of examples involving the Lie algebras o(p ,  4) are considered. 

Definition. Two elements of 1(N, R) have the same structure or, equivalently, belong to 
the same stratum, iff their centralisers are conjugate under the action of L(N, R). 

Considering the centralisers (tables 2-5) of the normal forms of elements of the 
different algebras 1(N, R), it is straightforward to prove the following propositions. 

Proposition 1 (sp(2n, R)). Two elements of sp(2n, R) belong to the same stratum iff their 
Jordan normal forms (M,, K) have: 

(i) the same number of pairs of non-zero real eigenvalues ( f a )  and for each pair the 
same blocks of type 111, 

(ii) the same number of quadruples of non-zero eigenvalues (*a *ib) and for each 
quadruple the same blocks of type IV, 

(iii) the same number of pairs of non-zero eigenvalues (kib), b E R  and for each 
pair, the same blocks of type 11, 

(iv) the same blocks of types I and I11 for the zero eigenvalue. 
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Table 6. Transversal subspaces to orbits of normal forms of elements of 1(N, 88)  with 
minimal number of non-zero entries. The quantities Aj ,  bj, etc of table 4 are of the form 
c ~ R , i c ~ i R , ( - : f ) , ( - $  $ ) ~ W e t c .  A, -(-;l)means:Ajisoftheform(-;l). eisgivenasin 
(2.6). F2 is given in (2.15). 

Figure 1’ 

Figure 1‘ or 1 Figure 1’‘ 

1 
Figure 3’ 

Figure 2’ 

Figure 2” 
Figure 4‘ 

Figure 5’ 

Proposition 2 (sp(2p, 24)). Two elements of sp(2p, 2q) belong to the same stratum iff 
their Jordan normal forms (MJ, K) have: 

(i) the same number of pairs of non-zero real eigenvalues (&a) and for each pair the 
same blocks of type 111, 

(ii) the same number of quadruples of non-zero eigenvalues (*a *ib) and for each 
quadruple the same blocks of type IV, 

(iii) the same number of pairs of non-zero eigenvalues (kib), b ER, and for each 
pair, the same blocks of type 11, with the corresponding part of the matrix K of same 
signature, 

(iv) the same blocks of types I and I11 for the zero eigenvalue with the correspond- 
ing part of the matrix K of same signature. 
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Proposition 3 (U( p ,  4)). Two elements of U( p ,  4 )  have the same structure iff their normal 
forms (MJ, K) have: 

(i) the same number of eigenvalues ib and for each eigenvalue ib the same blocks of 
type I, with the corresponding part of the matrix K of same signature, 

(ii) the same number of pairs of eigenvalues (p, -p*)  and for each pair the same 
blocks of type 11. 

Proposition 4 (o(p,  4)). Two matrices of o(p, 4) belong to the same stratum iff their 
normal forms (MJ, K) have: 

(i) the same number of pairs of eigenvalues *al, . . . , *a,, *ibl, . . . , *ib, with the aj 
(bj) distinct and either *aj (*ibj) are simple non-zero eigenvalues or aj = 0 (bj = 0) and 
the eigenvalue 0 has multiplicity 2, 

(ii) the same number of multiple non-zero eigenvalues (*a) and for each of these 
pairs the same blocks of type 111, 

(iii) the same number of multiple non-zero eigenvalues (*ib) and for each of these 
pairs, the same blocks of type I1 with the corresponding part of the matrix K of same 
signature, 

(iv) the same number of quadruple eigenvalues (*a *ib) and for each of these 
quadruples the same blocks of type IV, 

(v) the same blocks of types I and I11 for the eigenvalue 0, when 0 has multiplicity 
not equal to 2, with the corresponding part of K of the same signature. 

Proposition 5 (0*(2n)). Two matrices of o*(2n) belong to the same stratum iff their 
normal forms (MJ, K) have: 

(i) the same number of pairs of eigenvalues *ibl, . . . , kib,, with the bi distinct and 
either ibj are simple non-zero eigenvalues or bj = 0 and the eigenvalue 0 has multiplicity 
2, 

(ii) the same number of eigenvalues ( *a )  and for each of these pairs the same blocks 
of type 111, 

(iii) the same number of multiple eigenvalues (kib) and for each of these pairs the 
same blocks of type 11, 

(iv) the same number of eigenvalues (*a *ib) and for each of these quadruples the 
same blocks of type IV, 

(v) the same blocks of type I for the eigenvalue 0, when 0 has multiplicity not equal 
to 2. 

Each stratum is a semi-algebraic manifold (defined by equalities and inequalities). 
The splitting of l(N,R) into strata is a finite semi-algebraic stratification. 

Consequently, the transversality theorem (Thom and Levine 1959) applies to it. 
Therefore one has the following. 

Corollary. The set of families of elements of 1(N, R) transversal to all the strata is a dense 
set (which is a countable intersection of dense open sets). 

From this the following definition becomes very natural. 

Definition. A family of matrices is in general position if it is transversal to all the strata. 
The bifurcation diagram of such a family is the set of parameter values which 
correspond to matrices belonging to strata of positive codimension. A stratum of 
positive codimension is called a singularity. 
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The bifurcation diagram is a finite union of smooth manifolds, each of which 
corresponds to a set of matrices with a given structure. The codimension of a stratum in 
1(N, R) # u(p, q )  is (Patera et al 1982): 

p = + l  

p = o  otherwise 

when 0 has multiplicity 2 and 
c z d - 1  2v - p  1(N, R) = o ( p ,  4 )  or o*(2n) (4.1) 

where v is the number of distinct non-zero eigenvalues of the stratum. For a stratum in 
U( p ,  q )  the codimension is given by 

c = d - v  (4.2) 

where v is the number of distinct eigenvalues. In (4 .1)  and (4.2), d is the codimension of 
the orbit of any element of the stratum. It is given in tables 3-5. 

Notation. Irreducible blocks of types I, 11, 111, IV of elements of 1(N, R) # u(p, q )  are 
denoted by On, (*ib)", (*a)" ((*to)" if a = O ) ,  (*a kib)". When it is necessary to 
mention the signature of the corresponding part of K we use the subscripts f: 

O:, (*ib): 

01, (*ib): 

if p > q (depending on 6 in table 1) 

if p C q. 

In the case of u ( p , q ) ,  blocks of types I and I1 are denoted respectively (ib)" and 
(p, +*In. When necessary, we distinguish between (ib): for p > q and (ib)? for p C q. 

Here n is the multiplicity of the eigenvalue. A stratum is denoted by the product of 
its blocks. The signature of each block is the signature of the corresponding K in table 
1. For many examples see tables 7 and 8. 

Table 7 contains all normal forms MJ of o(p, q ) ,  p + q s 6 .  Each entry represents a 
stratum. An entry with non-zero eigenvalues represents a continuum of orbits of the 
stratum distinguished by their eigenvalues. Two entries belonging to the same o(p,  q j  
are given relative to different bases and can be compared only after transformation to a 
common basis (cf an example below). Together with each entry the table contains also 
the codimensions d and c of its orbit and stratum. 

Instead of listing all the normal forms of elements of a given Lie algebra, it is more 
economical to list elements of the same codimensions for Lie algebras of the same type 
and all ranks because simple eigenvalues do not contribute to c. Often the low 
codimensions are the most interesting ones. Table 8 contains a list of all strata in o(p,  q )  
with codimension c s 3. Each stratum is identified by a representative of its elements. 
The underlined entries of codimensions 2 and 3 correspond to cases which are not 
obtained as direct sums of lower dimensional ones. Simple eigenvalues are not listed. 

Next we describe versal deformations of o(p ,  q )  elements belonging to strata of 
codimension 1 and those belonging to codimension 2 which are not intersections of two 
strata of codimension 1 (cf column c = 1 and the underlined entries of column c = 2 of 
table 8). The normal forms MJ and their versal deformations are given in table 9 for the 
smallest value of p + q in which they occur. For any greater p + 4  the corresponding 
matrix of table 9 has to be enlarged with a diagonal matrix with distinct eigenvalues, 
depending on additional parameters p,. When all the parameters A ,  and p, are put 
equal to zero, one has the normal form M,. Parameters A are used in the description of 
both orbits and strata, while when changing a g, one stays within the same stratum. The 
number of parameters pi is subtracted from the codimension d of an orbit in order to get 
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Table 8. Strata in o(p, 4) of codimension c C 3.  Strata which are not obtained as inter- 
sections of strata of smaller codimension are underlined. Details of notation in § 4. 

c = l  c = 2  c = 3  

the codimension c of a stratum. If only representatives of strata are desired, all 
parameters 

In table 10 we give the bifurcation diagrams corresponding to all examples appear- 
ing in table 9. The bifurcation diagrams are obtained in the following way: one takes the 
versal deformation in table 9, equates the g, to zero and then asks that the characteristic 
polynomial of the resulting matrix has a zero discriminant. We give the equation of the 
discriminant, draw the curve and give in each region of the plane the respective position 
of the eigenvalues. Table 10 contains all cases of codimensions 1 and 2 which are not an 
intersection of two cases of codimension 1 (column c = 1 and underlined entries of 
column c = 2 of table 8). We give also an example of one case of codimension 2 which is 
the direct sum of two cases of codimension 1, namely (*a)z(*ib)z. 

Finally let us describe the translation of a versal deformation described in this article 
into a fixed ‘physical basis’. We chose the Lie algebra 0(4,2) of the conformal group of 
space-time and a basis common in physics (cf appendix). Suppose we want to find versal 
deformations in 0(4,2) of the element K2, where KZ is one of the three generators of 
Lorentz boosts. 

In the basis (A3), KZ = R35 (cf Al).  We bring it to a diagonal form using the matrix 

of table 9 should be put equal to zero. 

0 0 0 0  /: : 0 0 0 o \  

I 1 0 0  J2 J 2 0 0  
g=i I 0 0  0 0 0 2 ’  

1 \ 0 0  0 0 2 0 ’  
0 0 +Li -J2 0 0 

(4.3) 

More precisely, 

(4.4) 
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Table 10. Bifurcation diagrams of 1- and 2-parameter families of elements of o(p, q )  in  
general position. The different circles indicate the position of the eigenvalues in each region 
of the (hl-A2) plane. The interiors of the circles are portions of the complex plane, dots and 
concentric circles indicating multiple eigenvalues with the corresponding multiplicity. 

I o  

I 0 

4X:=27X: 

c.1 
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The matrix verifying MjK'+ K'M; = o is 

1085 

Diagonalising K', one verifies that it has the correct signature, namely 

We next find the versal deformation of MJ. Since c = 3 it does not appear in table 9. 
(1 1 1 -1 -1 1). 

From the general results in table 3 it follows that the deformation is given by 

0 
0 A 1  0 i - A i  0 0 

(4.6) 

0 A 2  0 
A 3  As 0 0 \ -A4 -A6 0 

whereA1, ..., h 6 , p ~ I W  andMA(O,O)=MJ. (MJwasoftypeI+I+III+I'+I.)  

appendix, MA(& p )  has to be brought back in the basis (A3). We obtain 
In order to identify the deformation in terms of the physical generators of the 

0 A i  0 A4 0 A 3  

0 0  0 0 l+p 0 
0 0 

. (4.7) Mb, (A, p )  = gMA(A, p )g-' = 

The versal deformation Mb, (A, p )  of the generator K2 is now in the basis (Al). 
Therefore, by an obvious change of parameters it can be written as 

Mb, (A, p )  = K2 + pK2 + A :Pi + A  ;Ci + AiP3 +A;C3 + A ;L2 +AD. (4.8) 

Putting p = 0 (4.8) gives representatives of all strata in the neighbourhood of K2. The 
Jordan normal form of Kz contains no non-zero off-diagonal elements, and therefore 
also the versal deformation (43) is relatively obvious; it turns out to be a linear 
combination of 0(4,2) generators which commute with K2. 

Appendix 

In physics the usual basis of the Lie algebra 0(4,2) of the conformal group of space-time 
consists of the following generators: rotations Li, Lorentz boosts Kt, dilation 0, 
translations P,, and special conformal transformations C,, where i = 1 , 2 , 3  and p = 0, 
1, 2, 3. They satisfy the standard commutation relations (cf for instance, Burdet et a1 
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1978). As 6 x 6 real matrices the generators can be chosen in the following way 

L1= 0 2 3  L2 = -5224 L3 = a 3 4  

Ki = 5245 Kz = 5235 K3 = 0 2 s  

Pi - c1= 2 0 1 4  P2- c;! = 25213 P3 - c3 = 25212 (AI) 

Pi c 1 =  2f&i P2 + cz = 2 0 3 6  P 3  + c3 = 25226 

Po- CO = -2015  PO + CO = 2 0 5 6  D = -1216 

where 

(A2 1 

Here Eii is the 6 x 6 matrix with 1 at the intersection of the ith row and the jth column. 
Any matrix X of (Al) belongs to the 0(4,2) algebra because it verifies the defining 
relation XK + KXT = 0 with 

E..  li - E , .  11 f o r l s i , j s 4 a n d 5 s i , j S 6  
52ii = { Eij + Eji otherwise. 

1 
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